

## Year 1 Clock Project Design Drawings

$$
\text { Jon Colombo. June } 2014 .
$$




This pack contains working drawings and notes made as part of the First Year Clock Project undertaken as part of the first year of the West Dean 2 year Diploma in Conservation and Restoration of Clocks.

The project involves the design and manufacture of an eighteenth century style Hoop and Spur clock. The drawings in this pack represent an 'electronic sketch book'. They are not technical drawings, but are to scale, being used to test out aesthetic and other design considerations during the manufacture of the clock.

## Contents

Clock Process Flow ..... 3
Escapement Design ..... 4
Initial Construction \& Train Sizing ..... 5
Fit. Wheels as cut ..... 6
Train. Side Profile ..... 7
Backcock, Hoop, Spurs ..... 8
Pendulum, Suspension, Crutch ..... 9
Dial and Under-Dial Fit ..... 10
Dial Aesthetics ..... 11
Chapter Ring Engraving ..... 12

## Planning: Process Flow



Notes:

- 'Square' Escapement
- 30 Teeth $=12^{\circ}$ per tooth
- Outside Diameter 43
- Pallets appropriate to 18th Century Clock
- Impulse Angles $5^{\circ}$
- $6^{\circ}$ Drop
- $6^{\circ}$ Irop
- Tripod Crossing
$\square$
Case Study Page: 5


## Initial Construction \& Train Sizing

| Notes: <br> - Numbers in red are given <br> - Wheels to be appropriately substantial <br> - Escape Wheel to be Central - for simplicity <br> - OD Formula for large wheel size is: \#teeth $+2.76 \times$ module <br> - OD Formula for $6,7,8$ pinions is: \#teeth $+1.71 \times$ module <br> - Ideally weights should hang centrally <br> - Pillars c 6:I height to width ratio |  |
| :---: | :---: |
| Other dimensions <br> - Plates: I $26 \times 78$ <br> - Pillars: I2ø max, 7ø min. | Escape <br> - Teeth: $\mathbf{3 0}$ <br> - Module: N/A <br> - PCD: N/A <br> - Dia (total): 43 |
| Escape Pinion <br> - Leaves: 7 <br> - Module: . 65 <br> - PCD: 7x. $65=4.55 \varnothing$ <br> - Dia(total): $7+1.71 \times 0.65=5.66$ | Intermediate Wheel <br> - Teeth: 84 <br> - Module .65 <br> - PCD: $84 \times .65=54.6$ <br> - Dia(total): $84+2.76 \times .65=56.4$ <br> - Crossing data: <br> s Collet: 10ø <br> s Crossing c 2 min <br> s Margin of 3 to give 16 mm safety <br> s 4 circles of 2.80 @ 43.6 for crossings |
| Intermediate Pinion <br> - Leaves: 8 <br> - Module: . 7 <br> - PCD: $8 x .7=5.6$ <br> - Dia (total): $8+1.71 \times 0.7=6.78$ | Great Wheel <br> - Teeth: 96 <br> - Module: . 7 <br> - PCD: 96x.7=67.2 <br> - Dia (total): $96+2.76 \times .7=69$ <br> - Crossing data: <br> \& Collet: 10ø <br> s Crossing c 2.2 min <br> s Margin of 3 to give 16 mm safety <br> s 4 circles of 3.420 @ 55.2 for crossings |



Case Study Page: 6

## Fit. Wheels as cut

| Notes: <br> - Numbers in red are given <br> - Wheels to be appropriately substantial <br> - Escape Wheel to be Central - for simplicity <br> - Wheels have to clear the pillars <br> - OD Formula for large wheel size is: \#teeth $+2.76 \times$ module <br> - OD Formula for $6,7,8$ pinions is: \#teeth $+1.71 \times$ module <br> - Ideally weights should hang centrally <br> - To get PCD given OD, need the Calculating Module = (OD*Teeth $) /($ Teeth +2.76) ... from this the cutter module can be chosen - should always be bigger than the Calculating Module, never smaller. |  |
| :---: | :---: |
| Other dimensions <br> - Plates: $126 \times 78$ <br> - Pillars: I2ø max, 7ø min. | Escape <br> - Teeth: $\mathbf{3 0}$ <br> - Module: NIA <br> - PCD: N/A <br> - Dia (total): 43 <br> - Centred 42.3 from top |
| Escape Pinion <br> - Leaves: 7 <br> - Calculating Module: .634 <br> - Cutting Module: . 65 <br> - PCD: 7x. $65=4.55$ <br> - Dia(total): $7+1.71 \times 0.65-5.66-5.52$ | Intermediate Wheel <br> - Teeth: 84 <br> - Calculating Module 6.34 <br> - Cutting Module . 65 <br> - PCD: $84 \times .65$ - $54.6-54$ <br> - Dia (total):84+2.76x.65-56.4 55 |
| Intermediate Pinion <br> - Leaves: 8 <br> - Calculating Module: .695 <br> - Cutting Module: . 7 <br> - PCD: $8 \times .7=5.6$ <br> - Dia (total): $8+1.71 \times 0.7-6.786 .37$ | Great Wheel <br> - Teeth: 96 <br> - Calculating Module: . 695 <br> - Cutting Module: 7 <br> - PCD: 96x.7-67.267 <br> - Dia (total): 96+2.76×.7-69 68.65 <br> - Centred 34.8 from bottom |



Train. Side profile

## Notes:

- Pinion Length should be c 3 times thickness of the engaging wheel and about the same length as its diameter.
- Endshake can be a maximum of .5 mm ideally .2 to .3
- Sprocket should be as close to Great Wheel as


## Thicknesses/Measurements

- Plates (Measured)
- Pillars (Measured) 37.75
- Pallets (Measured): 3.9
- Escape Wheel (Measured): 1.3
- Escape Wheel to Plate (Derived) 18
- Escape Pinion (Derived): 6.0
- Escape Pinion to Plate (Derived): I. 5
- Intermediate Wheel (Measured): 2.0
- Intermediate to Plate (Derived): 4
- Intermediate Pinion (Derived): 6.0
- Intermediate Pinion to Plate (M): 2.2
- GreatWheel (Measured) 2.2
- GreatWheel to Plate (Derived): <4
- Arbors
- Sprocket:
- Centre 24.5ø 5.0 wide
- Cheeks 36ø I. 5 wide
- Hub I0ø 18 wide
- Click
- Brass width 3.3
- Steel width 3



## Backcock, Hoop, Spurs

## Notes:

- Backcock, mixture of measurement and design - styled after John Whitehurst of Derby.


## Thicknesses/Measurements:

- Hoop: 42 deep, 124 high (Measured) - width adjustable
- Screw Holes: 10 from side 52 from top.
- Pivot (Centre line of pendulum) to be at least 15 from wall. (Pendulum will be 15 inches long)

REAR
R


## Pendulum, Suspension, Crutch

| Notes: <br> - 15 " Pendulum, should be 17 " overall ( 432 mm ) <br> - Spring is $1 / 4^{\prime \prime}$ wide and $\mathrm{c} 1 / 2^{\prime \prime}$ showing <br> - Use CZIO8 for the Suspension Unit \& Bob <br> - Crutch to be 'pin' type |  |
| :---: | :---: |
| Measurements: |  |
| Pendulum |  |
| - Suspension Unit | 18 High |
| - Spring | 20 L ( 5 mm TB overlap) |
| - Top block | $66 \mathrm{~L}, 4 \mathrm{D}, 6 \mathrm{~W}$ (Max) |
| - Rod (exc threads) | 24330 |
| - Slide | $60 \mathrm{~L}, 4 \mathrm{D}, 6 \mathrm{~W}, \mathrm{I}^{\circ} \mathrm{Taper}$ |
| - Rating Thread | $30 \mathrm{~L} 3 \varnothing$ |
| - Bob | 60¢ |
| Crutch |  |
| - Top circle | $1.6 \times 70$ |
| - Oval Section | $1.6 \times 2 \times 60$ |
| - Bottom Circle | $1.6 \times 50$ |
| - Pin (inc thread) | $15 \times 3 \varnothing$, M 3 thread |



Dial and Under-Dial Fit

| Notes: <br> - Great Wh <br> - Working <br> - Hour: Gr <br> - Minute: <br> - Great Wh <br> - Cut twice one divisi | eel 8 assum eat Wh reat W heel sh aroun on to | rns in tion: D eel Ratio heel R uld no Cann creas | 12 hou is io <br> io protru Wh gap be |  | fron <br> plat g cut eth | plate <br> on |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Measurem <br> - Great Wh <br> - Front plat <br> - GW Pinio <br> - GW Arbo <br> - <br> - Rax <br> - Rear <br> - <br> - <br> - Arotw <br> - <br> - Sproc <br> - Unde <br> - Sproc <br> - <br> - Friction S | ents: <br> eel to <br> e to d <br> n Cen <br> $r:$ <br> diamet <br> Pivot: <br> Pivot: <br> en Pl <br> Exte <br> ket Pi <br> dial P <br> ket Pin <br> dial $P$ <br> pring, | Hands al back re size <br> r: <br> es: <br> sion: <br> to end to en Hole: Hole | Centre: <br> (rear): <br> (front) <br> .8 | 29.5 10 3.8 6.5 3.5 40, 37. 2.8 30.5 1.2 1.1 0.7 hick, 1 | 3 lon 3 long <br> 9 lon <br> roach <br> roach <br> prung |  |
|  | Teeth | PCD | OD | Thick | Mod | CMod |
| Hour Wheel | 80 | 52.44 | 54.3 | 1.2 | 6.56 | 6.5 |
| GW Pinion | 10 | 6.56 | 8.37 | 4.5 | 6.56 | 6.5 |
| Minute Wheel | 36 | 23.6 | 25.43 | 1.2 | 6.56 | 6.5 |
| Cannon | 54 | 35.4 | 37.23 | 1.2 | 6.56 | 6.5 |



Dial Aesthetics

## Notes:

- Dimensions taken from 'Essay Dial' - but
chapter ring designed for 2 hands.
- Proportions: Square with Break-arch
- Hands turn around centre of square
- Gap between hands no more than I mm, ideally I/2 mm


## Measurements: <br> - Dial <br> - Overall Height

- Square:
- Thickness:
- Arch: I32.6ø, 69.I to centre

Chapter Ring:

- Inner, Outer $\varnothing$

86, 137

- I/4 hour Ring $\varnothing$
- Minute Ring øs

92

- Thickness
- Boss: 45ø, IOI. 2 to Centre, 2.2 thick
- Minute Hand
- Boss
- Length
- Thickness
- Hour Hand
- Boss
- Length
- Thickness
- Pendulum (15")



## Chapter Ring Engraving

## Instructions:

I. Scale to size, reverse, print out on laser for transfer.
2. Transfer to chapter ring blank. (Correctly sized
finished disc, with feet) with nail varnish remover
3. Mount on Mandrel with Plywood backing plate.
4. On Lathe, with tool in vertical slide, using dividing head, and working at 9 O'clock:
I. Lightly scribe 2 top and bottom lines (blue on diagram) R 61 and 47.5 mm .
2. Engrave 3 Minute Rings, $r: 66,63,46$
3. Engrave hour markers in minute ring and inner rings - helps line up numbers - add in minute, $1 / 4$ and $\mathrm{I} / 2$ hour markers.
4. Engrave 'l's, cl. 4 mm wide. Use vertical slide to separate 's's by 2.5 .
5. Adjust vertical slide to line up with each green line in turn and engrave thin line of X's andV's.
6. Repeat for each red line in turn engraving thick lines of X's andV's (cl.4).
7. Engrave Serifs over the scribed lines.
8. With boring tool cut out chapter ring.
9. Hand finish Serifs etc.

For simplicity a standard font has been used, this produces flat letters. Manufactured numbers should follow the construction rings top and bottom.



## Notes:

- 6 off Commercial M4 Hex Screws.
- Body: Milld Steel bar, filed square.
- Rubber,: IOø Silver Steel, turned, filed to shape hardened, tempered, polished.
- Cutter: $10 \varnothing$ Silver Steel, turned, filed to shape, hardened, tempered, ground cutting edges.


